让找料更便捷
电子元器件
采购信息平台
生意随身带
随时随地找货
一站式电子元器件
采购平台
半导体行业观察第一站
标签:
摘要: 简介: ZigBee 是一种基于IEEE802.15.4标准的个域网协议,是一种低成本、低功耗的近距离无线组网通信技术。文中提出了一种基于ZigBee 与51内核的高频无线传感器网络节点的硬件设计方案,方案中详细介绍了其各组成模块的设计原理。并且该方案以Chipcon 公司的CC2430为基础,可应用于基于ZigBee协议的各种软硬件开发。
ZigBee 是一种基于IEEE802.15.4标准的个域网协议,是一种低成本、低功耗的近距离无线组网通信技术。文中提出了一种基于ZigBee 与51内核的高频无线传感器网络节点的硬件设计方案,方案中详细介绍了其各组成模块的设计原理。并且该方案以Chipcon 公司的CC2430为基础,可应用于基于ZigBee协议的各种软硬件开发。
无线传感器网络技术得到了飞速发展,由于2.4 GHz 通信频段免费、开放等特性,各种基于该频段的通信协议,如Wi-Fi、蓝牙等技术已相当成熟,并得到了广泛应用。ZigBee 是一种基于IEEE802.15.4 标准的低功耗个域网协议,该协议基于2.4 GHz 频段,是一种低成本、低功耗的近距离无线组网通信技术,近年来广泛应用于各种射频通信领域,如区域定位、视距数据传输、物联网标签、车用无线电子设备等。
CC2430 控制器电路配置
在本设计中,主控单元承担外围器件扩展与控制、A/D 转换、数据传输等功能。CC2430 属于高度集成的SOC 系统,其I/O 口设计紧凑,并具备复用功能,因此,在设计中需要尽量节约I/O 口的使用,必要时可对其进行扩展。同时,设计还应具备在线下载与调试功能,以方便工程应用的需要。
I/O 口配置
CC2430 具有21 个数字I/O 口引脚,即P0、P1、P2.它们均是8 位I/O口。每个口都可以单独设置为通用I/O 或外部设备I/O.除了两个高输出口P1_0和P1_1 之外,其余均用于输出。本设计相关I/O 口通过插接件形式进行预留,以方便不同场合使用及扩展,具体如图2 所示。
调试接口
本设计CC2430 具备在线调试与下载功能,可根据需要进行自由配置。图3 所示是CC2430 调试接口图,该接口通过调试接口引脚P2.2 与P2.1 组成,它们分别用作调试时钟与调试数据信号引脚。
时钟与复位
CC2430 的晶振采用二级设计,一级是32 MHz,另一级是32.768 kHz.在CC2430 整机工作模式下(PM0),这两种晶振需共同工作;而在PM1 和PM2电源模式下(省电模式),只有32.768 kHz 晶振工作;在PM3 模式下,两者全关。同时,在RBIAS1 和RBIAS2(22、26 引脚)引脚上须外接1% 精密电阻,为32 MHz 晶振提供精确偏置电流的具体电路如图4所示。CC2430 具备上电复位功能,也可采用手动复位。只需要将第10 引脚RESETn 强行拉至低电平,即可完成复位。
CC2430 射频模块
CC2430 射频模块部分的设计如图5 所示。在本设计中,CC2430 除P2_3 和P2_4 引脚预留外接晶振外,P0_0 至P2_2引脚全部引出作为接口。RF 输入输出采用高阻抗差分式,引脚分别为RF_n 与RF_p.,本设计采用单极天线,为了获得最好的通信性能,应采用非平衡变压器,以达到阻抗匹配的作用。
如图5 所示,分立器件L321、L331、L341 以及C341 构成非平衡变压器,用来连接差分输出端和单极天线。由于天线距离RF 引脚有一段距离,所以需要针对天线到RF 引脚的反馈传输线设计阻抗匹配。由于是单极天线,所以匹配阻抗为50 Ω,这部分阻抗由非平衡变压器和PCB 微带传输线组成,λ 为PCB 传输线上微波波长,微带传输线实际上就是λ/2 阻抗匹配。
TXRX_SWITCH 是一个模拟电源输出引脚, 可为CC2430 内部的低噪声放大器(LNA)和功率放大器(PA) 提供校准电压。此引脚必须通过外接DC 电路连接至RF_n 和RF_p 引脚。当CC2430 处于接收状态时,TXRX_SWITCH 内部接地,为LNA 提供偏置电压,引脚上可得到低电平;当芯片处于发送状态时,TXRX_SWITCH 内部接供电电压,为PA 提供偏置电压,引脚上可测得高电平。另外,该电路的外接天线采用SMA 接口。
外围扩展电路
以CC2430 为核心的无线传感器网络节点在实际使用中,可配备相应外围电路,主要包括外部电源电路、显示与按键电路、串口与USB 通信电路等。通过这些电路,可对射频与主控模块进行相应的开发与调试。
电源电路
本设计的电源电路主要由TPS79533 低压稳压器及其外围器件组成。TPS79533 输出3.3 V 电压,其输入电压范围是2.7 ~ 5.5 V,并具有较高的电源抑制比、超低噪声、较好的电压线性和负载瞬态效应以及较小的电压漂移。其具体电路如图6 所示。
液晶显示电路
液晶显示电路可采用128&TImes;64 点阵式液晶显示器,同时,为节约主控芯片I/O 口资源,采用了串/ 并口转换芯片74HC595d.具体电路如图7 所示。为了使液晶显示器具备合适的背光亮度,还可在设计中采用相应的放大管,如9015 来驱动液晶显示器背光显示。
通信电路
通信电路负责节点与PC 机之间的数据收发,以实现数据下载、调试等功能。CC2430 采用RS232 通信模式,具体电路如图9 所示。本设计采用经典设计的RS232 电路,控制芯片采用了广泛使用的SP3223E,其RXD1 与TXD1 引脚可与CC2430 的P0.2 与P0.3 引脚直接相连接。
需要注意的是,在实际使用中,大家经常采用笔记本电脑对节点进行在线调试和程序下载等操作,而笔记本电脑一般不具备串口,需要外接USB-RS232转换电路。笔者发现,在转换电路的选取上,市面上存在基于PL2602、SP3223E等器件的转换电路可以选择。PL2602 虽然价格便宜,但并不适应CC2430 的高比特率传输,而SP3223E 虽然价格较贵,但对CC2430 的支持较好,这也是在实际使用中需要注意的。
本文提出了一种基于CC2430的无线传感器网络节点及其外围扩展电路的硬件设计,介绍了控制器与射频模块电路和外围扩展电路,包括外部电源电路、液晶显示与键盘电路、通信电路。该方案在实际使用过程中性能稳定,工作良好,对同类型的设计方案也具有一定的指导意义。当然,在传感领域还有很多无线传输技术,如蓝牙、射频、wifi等,若读者有高见不妨在评论处多探讨。
是德曾率先推出 3GPP LTE 设计自动化、信号生成和信号分析等工具,最近又推出了协议测试和网络信令分析解决方案。数据采集技术是信息科学的重要分支之一,数据采集也是从一个或多个信号获取对象信息的过程。数据采集是工业控制等系统中的重要环节,通常采用一些功能相对独立的单片机系统来实现,作为测控系统不可缺少的部分,数据采集的性能特点直接影响到整个系统。电压的测量最为普遍性,研究设计并提高电压测量精度的方法及仪器具有十分重要的意义。在电压测量设计中,单片机作为控制器,是整个设计的核心。除此之外,设计中还必须有模数转换器(ADC)。ADC用于直接采集模拟电压并将模拟信号转换成数字信号,它直接影响着数据采集的精度和速度。
ADC控制电路模块
STM32的数字/模拟转换模块(DAC)是12位数字输入,电压输出的数字/模拟转换器。本设计中使用DAC来控制ADC匹配电路的增益。在打开DAC模块电源和配置好DAC所需GPIO的基础上,往DAC通道的数据DAC_DHRx寄存器写入数据,如果没有选中硬件触发,存入寄存器 DAC_DHRx的数据会在一个APB1时钟周期后自动传至寄存器DAC_DORx.一旦数据从DAC_DHRx寄存器装入DAC_DORx寄存器,在经过一定时间之后,输出即有效,这段时间的长短依电源电压和模拟输出负载的不同会有所变化。
为了扩大测量范围和测量精度,本设计在STM32的ADC前加入匹配电路。在ADC控制电路中,输入信号先经过射极电压跟随电路,然后经过分压电路,使输入信号满足AD603的输入要求。然后再经过射极电压跟随电路,输入ADC输入端。AD603的控制输入使用STM32的DAC,可以满足增益的要求。匹配电路以AD603为核心。AD603为单通道、低噪声、增益变化范围线性连续可调的可控增益放大器。带宽90MHz时,其增益变化范围为-10dB~+30dB;带宽为9M时范围为10~50dB.将 VOUT与FDBK短路,即为宽频带模式(90MHz宽频带),AD603的增益设置为-11.07dB~+31.07dB.AD603的5、7脚相连,单片AD603的可调范围为-10dB~30dB.AD603的增益与控制电压成线性关系,其增益控制端输入电压范围为±500mv,增益调节范围为 40dB,当步进5dB时,控制端电压需增大:
ADC匹配电路的 如图2所示。
SD卡驱动电路
本设计中使用的SD卡为MicroSD,也称TF卡。MicroSD卡是一种极细小的快闪存储器卡,主要应用于移动电话,但因它的体积微小和储存容量的不断提升,现在已经使用于GPS设备、便携式音乐播放器、数码相机和一些快闪存储器盘中。MicroSD卡与SD卡一样,有SPI和SDIO两种操作时总线。SPI总线相对于SDIO总线接口简单,但速度较慢。我们使用SDIO模式。MicroSD卡在SDIO模式时有4条数据线。其实,MicroSD在SDIO模式时有1线模式和4线模式,也就是分别使用1根或4根数据线。当然,4线模式的速度要快于1线模式,但操作却较复杂。本设计中使用的是SDIO的4线模式。MicroSD卡的硬件连接图如图3所示。
触摸屏电路
本设计在测量的通道和显示设置上,除了使用按键设置,还使用触摸屏进行设置。触摸屏使用芯片TSC2046控制,其硬件连接图如图4所示。
在图4中,TSC2046可以采集触摸屏的点坐标,从而确定触摸的位置,进行人机交互。STM32单片机通过SPI总线与TSC2046通信,可以得到触摸信息。本设计使用触摸屏进行测量通道数的设置和测量速度的设置。
STM32在速度、功耗方面性能都更加优越,并且STM32价格较低,在成本上也有优势。适合于控制电子设备的设计。使用12位ADC,能够满足一定的测量精度,对于较高的测量要求,则需要使用更高精确度的ADC。但是使用高精度 ADC和DSP芯片,将很大的增加开发成本。本设计方案完成了多路电压测量的各项功能,但是还需要在使用中检测其稳定可靠性,以使设计更加完善。
型号 | 厂商 | 价格 |
---|---|---|
EPCOS | 爱普科斯 | / |
STM32F103RCT6 | ST | ¥461.23 |
STM32F103C8T6 | ST | ¥84 |
STM32F103VET6 | ST | ¥426.57 |
STM32F103RET6 | ST | ¥780.82 |
STM8S003F3P6 | ST | ¥10.62 |
STM32F103VCT6 | ST | ¥275.84 |
STM32F103CBT6 | ST | ¥130.66 |
STM32F030C8T6 | ST | ¥18.11 |
N76E003AT20 | NUVOTON | ¥9.67 |