电子产业
数字化服务平台

扫码下载
手机洽洽

  • 微信小程序

    让找料更便捷

  • APP

    随时找料

    即刻洽谈

    点击下载PC版
  • 公众号

    电子元器件

    采购信息平台

  • 移动端

    生意随身带

    随时随地找货

  • 华强商城公众号

    一站式电子元器件

    采购平台

  • 芯八哥公众号

    半导体行业观察第一站

面向3G LTE基站设计的预处理解决方案

来源: 作者:华仔 浏览:160

标签:

摘要: 1. 引言长期演进(LTE)蜂窝标准是3GPP 3G演进的两个组成部分之一,另外一个是HSPA演进。如图1.0所示。LTE无线接入网络(RAN)规范被安排在2008年初完成,随后,一致性测试规范预计在2008年8月准备就绪。 射频功率放大器(RFPA)的操作可以获得更高的效率,从而使手机的电池寿命更长。对于下行链路来说,可以采用经典的OFDMA方案。除了调制之外,另外一个关键要素就是依赖于调度的信

1. 引言长期演进(LTE)蜂窝标准是3GPP 3G演进的两个组成部分之一,另外一个是HSPA演进。如图1.0所示。LTE无线接入网络(RAN)规范被安排在2008年初完成,随后,一致性测试规范预计在2008年8月准备就绪。 射频功率放大器(RFPA)的操作可以获得更高的效率,从而使手机的电池寿命更长。对于下行链路来说,可以采用经典的OFDMA方案。除了调制之外,另外一个关键要素就是依赖于调度的信道条件的可用性。这容许在共享信道中的时频资源在用户之间动态共享。调度间隔—正如间接提到的—是基于1ms的时分以及180KHz的频分。同样地,在MAC层的调度器的实现是确保下行链路性能的关键要素,因为它决定每一个链路所采用的速率。像存在于MAC层的HSDPA混合ARQ一样,要以多个并行停止和等待ARQ处理的形式采用软组合。混合ARQ方案是基于针对再次发射的增量冗余(IR),除了上述关键要素之外,LTE将把多天线支持作为该规范不可分割的组成部分。接收和发射分集方案、波束形成以及空间复用都将得到支持。LTE系统的目标之一就是,它需要允许从2G/3G向LTE的灵活升级。正因为如此,跨越1.25 MHz至20MHz的灵活的频谱分配要可用,且LTE系统应该能够在450 MHz到2.6GHz之间工作。换言之,LTE规范的带宽是不可知的 (Bandwidth agnostic)。另一点值得一提的是,与UMTS不同,LTE提供FDD/TDD组合和TDD方案、基于单一OFDMA无线接入技术的。TDD方案被称为帧结构2,支持与TD-SCDMA的共存3. LTE 物理层的关键要素LTE在利用通用无线接入技术的10ms无线帧的基础上提供两类帧结构。这两类帧结构分别是被称为类型1的FDD/半FDD以及被称为类型2的TDD,它们均基于10ms的无线帧,每一无线帧具有20个时隙,每个时隙占用0.5 ms。类型2帧结构被提供为与TD-SCDMA共存,如图3.0所示。注意,TD-SCDMA帧结构在5ms的子帧内具有10个时隙。这10个时隙当中的3个—DwPTS、GP和UpPTS—是专用时隙,它们在LTE帧结构类型2中被复制。
图4.0用于LTE的下行链路资源栅格 表1.0所描述的关键物理层参数是所分配的频率带宽的函数。 表1.0 DL物理层关键参数

4. LTE基带处理的重要特征 针对Tx和Rx的下行链路物理层如图3.0所示。注意,它可以被分解为两类处理,即符号率处理和采样率处理。从图3.0可见,与基于WCDMA的UMTS标准相比,符号率处理比较简单。
图5.0 3GPP LTE 下行链路处理 正如在UMTS中一样,LTE基站设计所面临的挑战在于上行链路的处理。在LTE的情形下,这进一步结合了短的处理时间要求,以实现较低的延时,与此同时,在NodeB具有较之于RNC更高层的功能。 在这一节我们将从微观和宏观两个方面回顾各种挑战以及解决方案。 在微观层面,特别是对于如图6.0所示的上行链路信号链来说,LTE延迟预算主要由HARQ往返的8ms延时来定义,也就是说,最初传输与再次传输之间的时间。要考虑两倍1ms的一次传输时间,刚好把6ms留给发送和接收数据。那意味着LTE上行链路处理必须在3 ms以内满足由下列功能提出的延迟预算。它们分别是: ? 信道估计延迟; ? 解调; ? 速率匹配和IR组合; ? 透平(Turbo)解码; ? MAC/RLC处理; ? UL/DL时间偏移量。
以如图7.0所示的iDFT处理为例,经过信道估值,在最坏情形下iDFT处理可用的最大处理时间是40us。赛灵思的iDFT解决方案使所有12的倍数的点长具有由2、3和5构成的素因子,能够满足处理时间的要求。除了FFT/iFFT之外—两个处理用DSP或FPGA均有效,在FPGA中做iDFT有明显的优势,因为DSP的比特反向寻址仅仅适合于基数2。类似地,为了有效地并行实现解码,赛灵思面向具有QPP交织器的LTE的透平解码IP核,利用400MHz的时钟速度对如图8.0所示的最大代码模块长度进行8次迭代的情形仅仅花40us的解码时间。
DDR2存储器、200 MHz、32比特只读的传输时间。 如表2.0中所示为对不同服务—远远好于最坏的情形—进行计算的例子,其中,包括必须不超过1000us总时间的编码时间以及sRIO传输的延迟。
表2.0 上行链路处理时间例子 从上表我们可以总结如下: ? 在SRIO传输中发生了重大的延迟; ? 需要并行实现透平编码。 这里的主要问题在于,延时和数据速率要求特别地给利用单一SRIO链路的协处理方法带来了挑战,因为对于20MHz带宽的情形它招致高达400us的延迟,这已经是可用处理时间的40%。 为了解决延迟问题,最好采用基于FPGA的预处理方法来取代FPGA作为协处理器方法。这意味着需要在FPGA中实现完整的PHY层处理,而DSP处理器担当控制器并完成更高层的各种功能。如图10.0所示。利用对DSP处理器的预处理方法,DSP处理器会取代网络处理器或把网络处理器功能减少至仅仅做集中的PDCP处理以及回程接口。采用这一方法的另一个优势就是FPGA可以被用于MAC加速功能以补偿在DSP上存在的低控制代码性能。另外的方法就是采用FPGA作为对网络处理器的预处理器,如图11.0所示。


图11.0 利用网络处理器架构实现的FPGA预处理 总而言之,这两种方法除了克服延迟问题之外,具有若干优势,如为将来规范的各种变化做好准备。 5. Xilinx LTE基带参考解决方案 赛灵思最近在巴塞罗纳举行的Mobile World Congress 2008上演示了面向PDSCH的、符合3GPP LTE标准的LTE基带下行链路解决方案。 该参考解决方案由各种相关的赛灵思LTEIP核组成,包括透平编码/解码、速率匹配、具有循环前缀插入以及QAM映射器和去映射器的FFT/iFFT。该参考解决方案的下行发送和接收链如图5.0所示。这一参考解决方案也适合对面向LTE的、业已开发完成的各种IP核[3]提供系统级验证。 在高于10MHz的带宽上,赛灵思成功地演示了远远高于100Mbps的视频流。这一成功的演示所采用的面向视频流的参考应用,是基于运行在一台个人电脑主机上的开放源视频局域网服务器(VideoLan Server)。LTE基带参考解决方案位于两个最近发布的ML507板上。每一块板通过千兆位以太网链路与主PC通信。由主PC发出的UDP数据包首先由三态以太网MAC模块(TEMAC)处理,随后经过轻量IP堆栈(LWIP),才进入LTE基站参考解决方案的发射(TX)模块。来自TX模块的I/Q数据通过用于处理的Aurora链路,被输出至具有LTE接收(RX)功能链的另一块ML507板上。 图12.0显示了在MWC 2008上的设置,而图13.0描绘了赛灵思LTE基带参考设计演示平台的各个模块。

图13.0 赛灵思LTE基带参考设计系统结构图

型号 厂商 价格
EPCOS 爱普科斯 /
STM32F103RCT6 ST ¥461.23
STM32F103C8T6 ST ¥84
STM32F103VET6 ST ¥426.57
STM32F103RET6 ST ¥780.82
STM8S003F3P6 ST ¥10.62
STM32F103VCT6 ST ¥275.84
STM32F103CBT6 ST ¥130.66
STM32F030C8T6 ST ¥18.11
N76E003AT20 NUVOTON ¥9.67
Baidu
map